If $y=\log (\sin x)$, prove that: $\frac{d^{3} y}{d x^{2}}=2 \cos x \operatorname{cose}^{3} x$
Basic idea:
$\sqrt{S e c o n d}$ order derivative is nothing but derivative of derivative i.e. $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
$\sqrt{T h e}$ idea of chain rule of differentiation: If $\mathrm{f}$ is any real-valued function which is the composition of two functions $u$ and $v$, i.e. $f=v(u(x))$. For the sake of simplicity just assume $t=u(x)$
Then $f=v(t) .$ By chain rule, we can write the derivative of $f$ w.r.t to $x$ as:
$\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{dv}}{\mathrm{dt}} \times \frac{\mathrm{dt}}{\mathrm{dx}}$
$\sqrt{\text { Product rule of differentiation- } \frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{uv})=\mathrm{u} \frac{\mathrm{dv}}{\mathrm{dx}}+\mathrm{v} \frac{\mathrm{du}}{\mathrm{dx}}}$
Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..
Let's solve now:
As we have to prove: $\frac{\mathrm{d}^{3} \mathrm{y}}{\mathrm{dx}^{2}}=2 \cos x \operatorname{cose}^{3} x$
We notice a third order derivative in the expression to be proved so first take the step to find the third order derivative.
Given, $y=\log (\sin x)$
Let's find $-\frac{d^{3} y}{d x^{3}}$
As $\frac{\mathrm{d}^{3} \mathrm{y}}{\mathrm{dx}^{3}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}\right)=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)\right)$
So lets first find $d y / d x$ and differentiate it again.
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}(\log (\sin \mathrm{x}))$
differentiating $\sin (\log x)$ using the chain rule,
let, $t=\sin x$ and $y=\log t$
$\because \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy}}{\mathrm{dt}} \times \frac{\mathrm{dt}}{\mathrm{dx}}$ [using chain rule]
$\frac{d y}{d x}=\cos x \times \frac{1}{t}$
$\left[\because \frac{\mathrm{d}}{\mathrm{dx}} \log \mathrm{x}=\frac{1}{\mathrm{x}} \& \frac{\mathrm{d}}{\mathrm{dx}}(\sin \mathrm{x})=\cos \mathrm{x}\right]$
$\frac{d y}{d x}=\frac{\cos x}{\sin x}=\cot x$
Differentiating again with respect to $x$ :
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}(\cot x)$
$\frac{d^{2} y}{d x^{2}}=-\operatorname{cosec}^{2} x$
$\left[\because \frac{d}{d x} \cot x=-\operatorname{cosec}^{2} x\right]$
$\frac{d^{2} y}{d x^{2}}=-\operatorname{cosec}^{2} x$
Differentiating again with respect to $x$ :
$\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{d}{d x}\left(-\operatorname{cosec}^{2} x\right)$
using the chain rule and $\frac{d}{d x} \operatorname{cosec} x=-\operatorname{cosec} x \cot x$
$\frac{\mathrm{d}^{3} \mathrm{y}}{\mathrm{dx}^{3}}=-2 \operatorname{cosec} \mathrm{x}(-\operatorname{cosec} \mathrm{x} \cot \mathrm{x})$
$=2 \operatorname{cosec}^{2} x \cot x=2 \operatorname{cosec}^{2} x \frac{\cos x}{\sin x}[\because \cot x=\cos x / \sin x]$
$\therefore \frac{\mathrm{d}^{3} \mathrm{y}}{\mathrm{dx}^{3}}=2 \operatorname{cosec}^{3} \mathrm{x} \cos \mathrm{x} \ldots \ldots . \mathrm{proved}$