Question:
If the total surface area of a solid hemisphere is 462 cm2, then find its volume.
Solution:
As, the total surface area of the solid hemisphere $=462 \mathrm{~cm}^{2}$
$\Rightarrow 3 \pi r^{2}=462$
$\Rightarrow 3 \times \frac{22}{7} \times r^{2}=462$
$\Rightarrow r^{2}=\frac{462 \times 7}{3 \times 22}$
$\Rightarrow r^{2}=49$
$\Rightarrow r^{2}=\sqrt{49}$
$\Rightarrow r=7 \mathrm{~cm}$
Now, the volume of the solid hemisphere $=\frac{2}{3} \pi r^{3}$
$=\frac{2}{3} \times \frac{22}{7} \times 7 \times 7 \times 7$
$=\frac{2156}{3} \mathrm{~cm}^{3}$
$=718 \frac{2}{3} \mathrm{~cm}^{3}$
$=718.67 \mathrm{~cm}^{3}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.