If $A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$, then $A+A^{*}=I$, if the value of $\alpha$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. π
D. $\frac{3 \pi}{2}$
The correct answer is B.
$A=\left[\begin{array}{lr}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
$\Rightarrow A^{\prime}=\left[\begin{array}{ll}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$
Now, $A+A^{\prime}=I$
$\therefore\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]+\left[\begin{array}{ll}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{lc}2 \cos \alpha & 0 \\ 0 & 2 \cos \alpha\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Comparing the corresponding elements of the two matrices, we have:
$2 \cos \alpha=1$
$\Rightarrow \cos \alpha=\frac{1 \pi}{2}=\cos \frac{-}{3}$
$\therefore \alpha=\frac{\pi}{3}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.