If three lines whose equations are $y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ and $y=m_{3} x+c_{3}$ are
concurrent, then show that $m_{1}\left(c_{2}-c_{3}\right)+m_{2}\left(c_{3}-c_{1}\right)+m_{3}\left(c_{1}-c_{2}\right)=0$.
The equations of the given lines are
y = m1x + c1 … (1)
y = m2x + c2 … (2)
y = m3x + c3 … (3)
On subtracting equation (1) from (2), we obtain
$0=\left(m_{2}-m_{1}\right) x+\left(c_{2}-c_{1}\right)$\
$\Rightarrow\left(m_{1}-m_{2}\right) x=c_{2}-c_{1}$
$\Rightarrow x=\frac{c_{2}-c_{1}}{m_{1}-m_{2}}$
On substituting this value of x in (1), we obtain
$y=m_{1}\left(\frac{c_{2}-c_{1}}{m_{1}-m_{2}}\right)+c_{1}$
$y=\frac{m_{1} c_{2}-m_{1} c_{1}}{m_{1}-m_{2}}+c_{1}$
$y=\frac{m_{1} c_{2}-m_{1} c_{1}+m_{1} c_{1}-m_{2} c_{1}}{m_{1}-m_{2}}$
$y=\frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}$
$\therefore\left(\frac{c_{2}-c_{1}}{m_{1}-m_{2}}, \frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}\right)$ is the point of intersection of lines $(1)$ and $(2)$.
It is given that lines (1), (2), and (3) are concurrent. Hence, the point of intersection of lines (1) and (2) will also satisfy equation (3).
$\frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}=m_{3}\left(\frac{c_{2}-c_{1}}{m_{1}-m_{2}}\right)+c_{3}$
$\frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}=\frac{m_{3} c_{2}-m_{3} c_{1}+c_{3} m_{1}-c_{3} m_{2}}{m_{1}-m_{2}}$
$m_{1} c_{2}-m_{2} c_{1}-m_{3} c_{2}+m_{3} c_{1}-c_{3} m_{1}+c_{3} m_{2}=0$
$m_{1}\left(c_{2}-c_{3}\right)+m_{2}\left(c_{3}-c_{1}\right)+m_{3}\left(c_{1}-c_{2}\right)=0$
Hence, $m_{1}\left(c_{2}-c_{3}\right)+m_{2}\left(c_{3}-c_{1}\right)+m_{3}\left(c_{1}-c_{2}\right)=0$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.