Question:
If three point (h, 0), (a, b) and (0, k) lie on a line, show that $\frac{a}{h}+\frac{b}{k}=1$
Solution:
If the points A (h, 0), B (a, b), and C (0, k) lie on a line, then
Slope of AB = Slope of BC
$\frac{b-0}{a-h}=\frac{k-b}{0-a}$
$\Rightarrow \frac{b}{a-h}=\frac{k-b}{-a}$
$\Rightarrow-a b=(k-b)(a-h)$
$\Rightarrow-a b=k a-k h-a b+b h$
$\Rightarrow k a+b h=k h$
On dividing both sides by kh, we obtain
$\frac{k a}{k h}+\frac{b h}{k h}=\frac{k h}{k h}$
$\Rightarrow \frac{a}{h}+\frac{b}{k}=1$
Hence, $\frac{a}{h}+\frac{b}{k}=1$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.