If $x=2+\sqrt{3}$, find the value of
$x^{3}+\frac{1}{x^{3}}$
Given, $x=2+\sqrt{3}$
To find the value of $x^{3}+\frac{1}{x^{3}}$
We have, $x=2+\sqrt{3}$,
$\frac{1}{x}=\frac{1}{2+\sqrt{3}}$
Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor
$2-\sqrt{3}$ for $\frac{1}{2+\sqrt{3}}$
$=\frac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})}$
Since, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
$\frac{1}{x}=\frac{2-\sqrt{3}}{4-3}$
$x+\frac{1}{x}=2+\sqrt{3}+2-\sqrt{3}$
$x+\frac{1}{x}=4$
We know that, $\left(a^{3}+b^{3}\right)=(a+b)\left(a^{2}-a b+b^{2}\right)$
$\left(x^{3}+\frac{1}{x^{3}}\right)=\left(x+\frac{1}{x}\right)\left(x^{2}-x \cdot \frac{1}{x}+\frac{1}{x^{2}}\right)$
$\left(x^{3}+\frac{1}{x^{3}}\right)=\left(x+\frac{1}{x}\right)\left(x^{2}+\frac{1^{2}}{x}-1\right)$
$\left(x^{3}+\frac{1}{x^{3}}\right)=\left(x+\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}+2-2-1\right)$
$\left(x^{3}+\frac{1}{x^{3}}\right)=\left(x+\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}+2\left(x \cdot \frac{1}{x}\right)-2-1\right)$
$\left(x^{3}+\frac{1}{x^{3}}\right)=\left(x+\frac{1}{x}\right)\left(\left(x+\frac{1}{x}\right)^{2}-3\right)$
Putting the value of $x+1 x$ in the above equation, we get,
$\left(x^{3}+\frac{1}{x^{3}}\right)=(4)\left(4^{2}-3\right)$
$\left(x^{3}+\frac{1}{x^{3}}\right)=52$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.