If x is a digit of the number

Question:

If $x$ is a digit of the number $\overline{66784 x}$ such that it is divisible by 9 , find possible values of $x$.

Solution:

It is given that $\overline{66784 \mathrm{x}}$ is a multiple of 9 .

Therefore, $(6+6+7+8+4+\mathrm{x})$ is a multiple of 9 .

And,

$(31+x)$ is a multiple of 9 .

Possible values of $(31+\mathrm{x})$ are $0,9,18,27,36,45, \ldots$

But $\mathrm{x}$ is a digit. So, $\mathrm{x}$ can only take value $0,1,2,3,4, \ldots 9$.

$\therefore 31+\mathrm{x}=36$

$\Rightarrow \mathrm{x}=36-31$

$\Rightarrow \mathrm{x}=5$

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now