If $y=y(x)$ is the solution of the differential equation $\frac{\mathrm{dy}}{\mathrm{dx}}+(\tan \mathrm{x}) \mathrm{y}=\sin \mathrm{x}, 0 \leq \mathrm{x} \leq \frac{\pi}{3}$, with
$y(0)=0$, then $y\left(\frac{\pi}{4}\right)$ equal to :
Correct Option: , 2
$\frac{\mathrm{dy}}{\mathrm{dx}}+(\tan \mathrm{x}) \mathrm{y}=\sin \mathrm{x} ; 0 \leq \mathrm{x} \leq \frac{\pi}{3}$
I.F. $=\mathrm{e}^{\int \tan x d x}=\mathrm{e}^{\ln \sec x}=\sec x$
$y \sec x=\int \tan x d x$
$y \sec x=\ell \operatorname{n}|\sec x|+C$
$\mathrm{x}=0, \mathrm{y}=0 \quad \Rightarrow \quad \therefore \mathrm{c}=0$
$y \sec x=\ell n|\sec x|$
$y=\cos x \cdot \ell n|\sec x|$
$\left.\mathrm{y}\right|_{\mathrm{x}=\frac{\pi}{4}}=\left(\frac{1}{\sqrt{2}}\right) \cdot \ell \mathrm{n} \sqrt{2}$
$\left.\mathrm{y}\right|_{\mathrm{x}=\frac{\pi}{4}}=\frac{1}{2 \sqrt{2}} \log _{\mathrm{e}} 2$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.