Deepak Scored 45->99%ile with Bounce Back Crack Course. You can do it too!

If z1, z2 and z3, z4 are two pairs of conjugate


If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg(z1/z4) + arg(z2/z3).


According to the question,

We have,

z1 and z2 are conjugate complex numbers.

The negative side of the real axis

= r1 (cos θ1 – i sin θ1)

= r1 [cos (-θ1) + I sin (-θ1)]

Similarly, z3 = r2 (cos θ2 – i sin θ2)

⇒ z4 = r2 [cos (-θ2) + I sin (-θ2)]

$\Rightarrow \arg \left(\frac{z_{1}}{z_{4}}\right)+\arg \left(\frac{z_{2}}{z_{3}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{4}\right)+\arg \left(z_{2}\right)-\arg \left(z_{3}\right)$

= θ1 – (-θ2) + (-θ1) – θ2

= θ1 + θ2 – θ1 – θ2

= 0

⇒ arg(z1/z4) + arg(z2/z3) = 0

Leave a comment

Free Study Material