In a quadrilateral ABCD, given that ∠A + ∠D = 90°.


In a quadrilateral $\mathrm{ABCD}$, given that $\angle \mathrm{A}+\angle \mathrm{D}=90^{\circ}$. Prove that $\mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AD}^{2}+\mathrm{BC}^{2}$.


Given: A quadrilateral $\mathrm{ABCD}$ where $\angle \mathrm{A}+\angle \mathrm{D}=90^{\circ}$.

To prove: $\mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AD}^{2}+\mathrm{BC}^{2}$

Construction: Extend AB and CD to intersect at O.


In $\triangle \mathrm{AOD}, \angle \mathrm{A}+\angle \mathrm{O}+\angle \mathrm{D}=180^{\circ}$

$\Rightarrow \angle O=90^{\circ}\left[\angle A+\angle D=90^{\circ}\right]$

Apply Pythagoras Theorem in $\triangle A O C$ and $\triangle B O D$,




$\therefore \mathrm{AC}^{2}+\mathrm{BD}^{2}=\left(\mathrm{AO}^{2}+\mathrm{OD}^{2}\right)+\left(\mathrm{OC}^{2}+\mathrm{OB}^{2}\right)$

$\Rightarrow \mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AD}^{2}+\mathrm{BC}^{2}$

This proves the given relation.

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now