In ΔABC,if BC = AB and ∠B = 80°, then ∠A is equal to
(a) 80°
(b) 40°
(c) 50°
(d) 100°
(c)
Given, $\triangle A B C$ such that $B C=A B$ and $\angle B=80^{\circ}$
$\ln \triangle A B C$, $A B=B C$
$\Rightarrow \quad \angle C=\angle A$ $\ldots(1)$
[angles opposite to equal sides are equal]
We know that, the sum of all the angles of a triangle is $180^{\circ}$.
$\therefore \quad \angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow \quad \angle A+80^{\circ}+\angle A=180^{\circ}$
$\Rightarrow \quad 2 \angle A=180^{\circ}-80^{\circ}=100^{\circ}$
$\Rightarrow \quad \angle A=\frac{100^{\circ}}{2}$
$\Rightarrow \quad \angle A=50^{\circ}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.