In fig., ABCD is a square of side 14 cm. With centres A, B, C and D, four circles are drawn such that each circle touch externally two of the remaining three circles. Find the area of the shaded region.
Side of the square ABCD = 14 cm
$\therefore \quad$ Area of the sqaure $\mathrm{ABCD}=14 \times 14 \mathrm{~cm}^{2}$
$=196 \mathrm{~cm}^{2}$
$\because \quad$ Circles touch each other
Radius of the circle $=\frac{\mathbf{1 4}}{\mathbf{2}}=7 \mathrm{~cm}$
Now, area of a sector of radius $7 \mathrm{~cm}$ and sector angle $\theta$ as $90^{\circ}$
$=\frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 7 \times 7 \mathrm{~cm}^{2}=\frac{11 \times 7}{2} \mathrm{~cm}^{2}$
Area of 4 sectors
$=4 \times\left[\frac{\mathbf{1 1} \times \mathbf{7}}{\mathbf{2}}\right]=2 \times 11 \times 7 \mathrm{~cm}^{2}=154 \mathrm{~cm}^{2}$
Area of the shaded region = [Area of the square ABCD] – [Area of the 4 sectors]
$=196 \mathrm{~cm}^{2}-154 \mathrm{~cm}^{2}=42 \mathrm{~cm}^{2}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.