In the given figure ABCD is a trapezium in which AB = 40 m,


In the given figure ABCD is a trapezium in which AB = 40 m, BC = 15 m, CD = 28 m, AD = 9 m and CE ⊥ AB. Area of trap. ABCD is

(a) 306 m2
(b) 316 m2
(c) 296 m2
(d) 284 m2


(a) 306 m2

In the given figure, AECD is a rectangle.

Length AE = Length CD = 28 m


$B E=A B-A E=40-28=12 \mathrm{~m}$

AD = CE = 9 m

Area of trapezium $=\frac{1}{2} \times$ Sum of parallel sides $\times$ Distance between them

$=\frac{1}{2} \times(D C+A B) \times C E$

$=\frac{1}{2} \times(28+40) \times 9$

$=\frac{1}{2} \times 68 \times 9$

$=306 \mathrm{~m}^{2}$

In the given figure, if DA is perpendicular to AE, then it can be solved, otherwise it cannot be solved.


Leave a comment