Let 1/16, a and b be in G.P. and

Question:

Let $\frac{1}{16}$, a and $b$ be in G.P. and $\frac{1}{a}, \frac{1}{b}, 6$ be in A.P., where $a, b>0$. Then $72(a+b)$ is equal to________.

Solution:

$a^{2}=\frac{b}{16} \Rightarrow \frac{1}{b}=\frac{1}{16 a^{2}}$

$\frac{2}{b}=\frac{1}{a}+6$

$\frac{1}{8 \mathrm{a}^{2}}=\frac{1}{\mathrm{a}}+6$

$\frac{1}{a^{2}}-\frac{8}{a}-48=0$

$\frac{1}{\mathrm{a}}=12,-4 \Rightarrow \mathrm{a}=\frac{1}{12},-\frac{1}{4}$

$\frac{1}{a}=12,-4 \Rightarrow a=\frac{1}{12},-\frac{1}{4}$

$a=\frac{1}{12}, a>0$

$\mathrm{b}=16 \mathrm{a}^{2}=\frac{1}{9}$

$\Rightarrow 72(a+b)=6+8=14$

 

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now