Let $A=\{-2,-1,0,1,2\}$ and $t: A \rightarrow Z$ be a function defined by $f(x)=x^{2}-2 x-3$. Find:
(a) range of f, i.e. f(A).
(b) pre-images of 6, −3 and 5.
(a) Given:
f (x) = x2 − 2x − 3
f (−2) = (− 2)2 − 2(− 2) − 3
= 4 + 4 – 3
= 8 − 3 = 5
f (−1) = (−1)2 − 2(−1) − 3
= 1+ 2 − 3
= 3 − 3 = 0
f (0) = (0)2 − 2(0) − 3
= 0 − 0 − 3
= − 3
f (1) = (1)2 − 2(1) − 3
= 1 − 2 − 3
=1 − 5 = − 4
f (2) = (2)2 – 2(2) − 3
= 4 − 4 – 3
(b) Let x be the pre-image of 6.
Then,
f(6) = x2 − 2x − 3 = 6
⇒ x2 − 2x − 9 = 0
= 4 – 7 = − 3
Thus, range of f(A) = (− 4, − 3, 0, 5).
$\Rightarrow x=1 \pm \sqrt{10}$
Since $x=1 \pm \sqrt{10} \notin A$, there is no pre-image of 6 .
Let $x$ be the pre-image of $-3$. Then,
$f(-3) \Rightarrow x^{2}-2 x-3=-3$
$\Rightarrow x^{2}-2 x=0$
$\Rightarrow x=0,2$
Clearly $0,2 \in A$. So, 0 and 2 are pre-images of $-3$.
Let x be the pre-image of 5. Then,
f(5) ⇒ x2 − 2x − 3 = 5
⇒ x2 − 2x − 8 = 0
⇒ (x − 4) (x + 2) = 0 ⇒ x = 4, − 2
Since $-2 \in A,-2$ is the pre-image of 5 .
Hence,
pre-images of $6,-3$ and 5 are $\phi,\{0,2,\},-$,2 respectively.