Let a curve y=f(x) pass through the point


Let a curve $y=f(x)$ pass through the point $\left(2,\left(\log _{e} 2\right)^{2}\right)$ and have slope $\frac{2 y}{x \log _{e} x}$ for all positive real value of $x$. Then the value of $f(e)$ is equal to


$y^{\prime}=\frac{2 y}{x \ell n x}$

$\Rightarrow \frac{\mathrm{dy}}{\mathrm{y}}=\frac{2 \mathrm{dx}}{\mathrm{x} \ell \mathrm{nx}}$

$\Rightarrow \ell \mathrm{n}|\mathrm{y}|=2 \ell \mathrm{n}|\ell \mathrm{nx}|+\mathrm{C}$

put $x=2, y=(\ell n 2)^{2}$

$\Rightarrow \mathrm{c}=0$

$\Rightarrow \mathrm{y}=(\ell \mathrm{nx})^{2}$

$\Rightarrow f(\mathrm{e})=1$

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now