Let ABCD be a square of side of unit length.


Let $\mathrm{ABCD}$ be a square of side of unit length.

Let a circle $C_{1}$ centered at $A$ with unit radius is drawn. Another circle $C_{2}$ which touches $C_{1}$ and the lines $\mathrm{AD}$ and $\mathrm{AB}$ are tangent to it, is also drawn. Let a tangent line from the point $\mathrm{C}$ to the circle $\mathrm{C}_{2}$ meet the side $\mathrm{AB}$ at $\mathrm{E}$.

If the length of EB is $\alpha+\sqrt{3} \beta$, where $\alpha, \beta$ are integers 8 then $\alpha+\beta$ is equal to_______.


Here $\mathrm{AO}+\mathrm{OD}=1$ or $(\sqrt{2}+1) \mathrm{r}=1$

$\Rightarrow \quad \mathrm{r}=\sqrt{2-1}$

equation of circle $(x-r)^{2}+(y-r)^{2}=r^{2}$ Equation of CE

Equation of CE


$m x-y+1-M=0$

It is tangent to circle

$\therefore \quad\left|\frac{\mathrm{mr}-\mathrm{r}+1-\mathrm{m}}{\sqrt{\mathrm{m}^{2}+1}}\right|=\mathrm{r}$

$\left|\frac{(\mathrm{m}-1) \mathrm{r}+1-\mathrm{m}}{\sqrt{\mathrm{m}^{2}+1}}\right|=\mathrm{r}$


Put $r=\sqrt{2}-1$

On solving $m=2-\sqrt{3}, 2+\sqrt{3}$

Taking greater slope of $\mathrm{CE}$ as



Put $\quad y=0$


$\frac{-1}{2+\sqrt{3}} \times\left(\frac{2-\sqrt{3}}{2-\sqrt{3}}\right)=x-1$




Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now