`
Question:
Let $\mathrm{S}(\alpha)=\left\{(\mathrm{x}, \mathrm{y}): \mathrm{y}^{2} \leq \mathrm{x}, 0 \leq \mathrm{x} \leq \alpha\right\}$ and $\mathrm{A}(\alpha)$ is area of the region $\mathrm{S}(\alpha)$. If for a $\lambda, 0<\lambda<4$, $\mathrm{A}(\lambda): \mathrm{A}(4)=2: 5$, then $\lambda$ equals
Correct Option: , 2
Solution:
$S(\alpha)=\left\{(x, y): y^{2} \leq x, 0 \leq x \leq \alpha\right\}$
$\mathrm{A}(\alpha)=2 \int_{0}^{a} \sqrt{\mathrm{x}} \mathrm{dx}=2 \alpha^{\frac{3}{2}}$
$\mathrm{A}(4)=2 \times 4^{3 / 2}=16$
$A(\lambda)=2 \times \lambda^{3 / 2}$
$\frac{\mathrm{A}(\lambda)}{\mathrm{A}(4)}=\frac{2}{5} \Rightarrow \lambda=4 \cdot\left(\frac{4}{25}\right)^{1 / 3}$