Let [t] denote the greatest integer


Let $[\mathrm{t}]$ denote the greatest integer $\leq \mathrm{t}$. Then the

value of $8 \cdot \int_{-\frac{1}{2}}^{1}([2 x]+|x|) d x$ is__________.


$I=\int_{-1 / 2}^{1}([2 x]+|x|) d x$

$=\int_{-1 / 2}^{1}[2 x] d x+\int_{-1 / 2}^{1}|x| d x$

$=0+\int_{-1 / 2}^{0}(-x) d x+\int_{0}^{1} x d x$

$=\left(-\frac{x^{2}}{2}\right)_{-1 / 2}^{0}+\left(\frac{x^{2}}{2}\right)_{0}^{1}$



$8 I=5$

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now