Let the function

Question:

Let $f(x)=\left\{\begin{array}{l}-1,-2 \leq x<0 \\ x^{2}-1,0 \leq x \leq 2\end{array}\right.$ and

$\mathrm{g}(\mathrm{x})=|\mathrm{f}(\mathrm{x})|+\mathrm{f}(|\mathrm{x}|)$. Then, in the interval $(-2,2), \mathrm{g}$ is :-

(–2, 2), g is :- 

  1. differentiable at all points

  2.  not differentiable at two points

  3. not continuous

  4. not differentiable at one point 


Correct Option: , 4

Solution:

$|f(\mathrm{x})|=\left\{\begin{array}{cc}1, & -2 \leq \mathrm{x}<0 \\ 1-\mathrm{x}^{2}, & 0 \leq \mathrm{x}<1 \\ \mathrm{x}^{2}-1, & 1 \leq \mathrm{x} \leq 2\end{array}\right.$

and $f(|\mathrm{x}|)=\mathrm{x}^{2}-1, \mathrm{x} \in[-2,2]$

Hence $g(x)=\left\{\begin{array}{ccc}x^{2} & , x \in[-2,0) \\ 0 & , \quad x \in[0,1) \\ 2\left(x^{2}-1\right) & , \quad x \in[1,2]\end{array}\right.$

It is not differentiable at x = 1 

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now