Let the line L be the projection of the line

Question:

Let the line $L$ be the projection of the line $\frac{x-1}{2}=\frac{y-3}{1}=\frac{z-4}{2}$ in the plane $x-2 y-z=3 .$ If $d$ is the distance of the point $(0,0,6)$ from $\mathrm{L}$, then $\mathrm{d}^{2}$ is equal to _________. 

 

Solution:

$\mathrm{L}_{1}: \frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}-3}{1}=\frac{\mathrm{z}-4}{2}$

for foot of $\perp \mathrm{r}$ of $(1,3,4)$ on $\mathrm{x}-2 \mathrm{y}-\mathrm{z}-3=0$

$(1+t)-2(3-2 t)-(4-t)-3=0$

$\Rightarrow \mathrm{t}=2$

So foot of $\perp \mathrm{r} \triangleq(3,-1,2)$

\& point of intersection of $\mathrm{L}_{1}$ with plane

is $(-11,-3,-8)$

dr's of $L$ is $<14,2,10>$

$\cong<7,1,5>$

$\Rightarrow \mathrm{d}^{2}=\frac{1^{2}+(43)^{2}+(10)^{2}}{49+1+25}=26$

 

Leave a comment

Close
faculty

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now