Deepak Scored 45->99%ile with Bounce Back Crack Course. You can do it too!

Solve this following


Consider the above reaction. The percentage yield of amide product is (Round off to the Nearest Integer).

(Given : Atomic mass : $\mathrm{C}: 12.0 \mathrm{u}, \mathrm{H}: 1.0 \mathrm{u}$, $\mathrm{N}: 14.0 \mathrm{u}, \mathrm{O}: 16.0 \mathrm{u}, \mathrm{Cl}: 35.5 \mathrm{u})$



$\therefore 0.140 \mathrm{gm} \quad \frac{169}{140.5} \times 0.140$

$\begin{array}{ll}\text { L.R. } & =0.168 \mathrm{gm}<0.388 \mathrm{gm}\end{array}$


$\therefore$ Theoretical amount of given product formed

$=\frac{273}{140.5} \times 0.140=0.272 \mathrm{gm}$

But its actual amount formed is $0.210 \mathrm{gm}$. Hence, the percentage yield of product.

$=\frac{0.210}{0.272} \times 100=77.20 \approx 77$

Mole of $\mathrm{Ph}-\mathrm{CoCl}=\frac{0.140}{140}=10^{-3} \mathrm{~mol}$

Mole of $\mathrm{Ph}$  $(\mathrm{Ph})_{2}$, that should be obtained

by mol-mol analysis $=10^{-3} \mathrm{~mol}$.

Theoritical mass of product $=10^{-3} \times 273=$ $273 \times 10^{-3} \mathrm{~g}$

Observed mass of product $=210 \times 10^{-3} \mathrm{~g}$

$\%$ yield of product $=\frac{210 \times 10^{-3}}{273 \times 10^{-3}} \times 100=76.9 \%=77$


Leave a comment

Free Study Material