Question.
Name the quadrilateral formed, if any, by the following points, and give reasons for your answer.
(i) (–1, –2), (1, 0), (–1, 2), (– 3, 0)
(ii) (–3, 5), (3, 1), (0, 3), (–1, – 4)
(iii) (4, 5), (7, 6), (4, 3), (1, 2)
Name the quadrilateral formed, if any, by the following points, and give reasons for your answer.
(i) (–1, –2), (1, 0), (–1, 2), (– 3, 0)
(ii) (–3, 5), (3, 1), (0, 3), (–1, – 4)
(iii) (4, 5), (7, 6), (4, 3), (1, 2)
Solution:
(i) A(–1, –2), B(1, 0), C(–1, 2), D(–3, 0)
Determine distances : AB, BC, CD, DA, AC and BD.
$\mathrm{AB}=\sqrt{(1+1)^{2}+(0+2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$\mathrm{BC}=\sqrt{(-1-1)^{2}+(2-0)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$C D=\sqrt{(-3+1)^{2}+(0-2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$D A=\sqrt{(-1+3)^{2}+(-2-0)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
AB = BC = CD = DA
The sides of the quadrilateral are equal ............(1)
$\left.\begin{array}{l}\mathrm{AC}=\sqrt{(\mathbf{1}+\mathbf{1})^{2}+(\mathbf{2}+\mathbf{2})^{2}}=\sqrt{\mathbf{0}+\mathbf{1 6}}=4 \\ \mathrm{BD}=\sqrt{(\mathbf{3}-\mathbf{1})^{2}+(\mathbf{0}-\mathbf{0})^{2}}=\sqrt{\mathbf{1 6}+\mathbf{0}}=4\end{array}\right\}$
Diagonal AC = Diagonal BD..........(2)
From (1) and (2) we conclude that ABCD is a square.
(ii) Let the points be $\mathrm{A}(-3,5), \mathrm{B}(3,1), \mathrm{C}(0,3)$ and $\mathrm{D}(-1,-4)$.
$\therefore A B=\sqrt{(3-(-3))^{2}+(1-5)^{2}}$
$=\sqrt{6^{2}+(-4)^{2}}=\sqrt{36+16}$
$=\sqrt{52}=2 \sqrt{13}$
$B C=\sqrt{(0-3)^{2}+(3-1)^{2}}=\sqrt{9+4}=\sqrt{13}$
$C D=\sqrt{(-1-0)^{2}+(-4-3)^{2}}=\sqrt{(-1)^{2}+(-7)^{2}}$
$=\sqrt{1+49}=\sqrt{50}$
$D A=\sqrt{|-3-(-1)|^{2}+[5-(-4)]^{2}}$
$=\sqrt{(-2)^{2}+(9)^{2}}$
$=\sqrt{4+81}=\sqrt{85}$
$A C=\sqrt{(0-(-3))^{2}+(3-5)^{2}}=\sqrt{(3)^{2}+(-2)^{2}}$
$=\sqrt{9+4}=\sqrt{13}$
$B D=\sqrt{(-1-3)^{2}+(-4-1)^{2}}=\sqrt{(-4)^{2}+(-5)^{2}}$
$=\sqrt{16+25}=\sqrt{41}$
We see that $\sqrt{\mathbf{1 3}}+\sqrt{\mathbf{1 3}}=\mathbf{2} \sqrt{\mathbf{1 3}}$
i.e., AC + BC = AB
A, B and C are collinear. Thus, ABCD is not a quadrilateral.
(iii) Let the points be A(4, 5), B(7, 6), C(4, 3) and D(1, 2).
$\therefore A B=\sqrt{(7-4)^{2}+(6-5)^{2}}=\sqrt{3^{2}+1^{2}}=\sqrt{10}$
$\mathrm{BC}=\sqrt{(4-7)^{2}+(3-6)^{2}}$
$=\sqrt{(-3)^{2}+(-3)^{2}}=\sqrt{18}$
$C D=\sqrt{(\mathbf{1}-\mathbf{4})^{2}+(\mathbf{2}-\mathbf{3})^{2}}$
$=\sqrt{(-3)^{2}+(-1)^{2}}=\sqrt{10}$
DA $=\sqrt{(\mathbf{1}-\mathbf{4})^{2}+(\mathbf{2}-\mathbf{5})^{2}}=\sqrt{\mathbf{9}+\mathbf{9}}=\sqrt{\mathbf{1 8}}$
$A C=\sqrt{(4-4)^{2}+(3-5)^{2}}=\sqrt{0+(-2)^{2}}=2$
$\mathrm{BD}=\sqrt{(1-7)^{2}+(2-6)^{2}}=\sqrt{36+16}=\sqrt{52}$
Since, AB = CD, BC = DA [opposite sides of the quadrilateral are equal]
And $\mathrm{AC} \neq \mathrm{BD} \Rightarrow$ Diagonals are unequal.
$\therefore$ ABCD is a parallelogram.
(i) A(–1, –2), B(1, 0), C(–1, 2), D(–3, 0)
Determine distances : AB, BC, CD, DA, AC and BD.
$\mathrm{AB}=\sqrt{(1+1)^{2}+(0+2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$\mathrm{BC}=\sqrt{(-1-1)^{2}+(2-0)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$C D=\sqrt{(-3+1)^{2}+(0-2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$D A=\sqrt{(-1+3)^{2}+(-2-0)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
AB = BC = CD = DA
The sides of the quadrilateral are equal ............(1)
$\left.\begin{array}{l}\mathrm{AC}=\sqrt{(\mathbf{1}+\mathbf{1})^{2}+(\mathbf{2}+\mathbf{2})^{2}}=\sqrt{\mathbf{0}+\mathbf{1 6}}=4 \\ \mathrm{BD}=\sqrt{(\mathbf{3}-\mathbf{1})^{2}+(\mathbf{0}-\mathbf{0})^{2}}=\sqrt{\mathbf{1 6}+\mathbf{0}}=4\end{array}\right\}$
Diagonal AC = Diagonal BD..........(2)
From (1) and (2) we conclude that ABCD is a square.
(ii) Let the points be $\mathrm{A}(-3,5), \mathrm{B}(3,1), \mathrm{C}(0,3)$ and $\mathrm{D}(-1,-4)$.
$\therefore A B=\sqrt{(3-(-3))^{2}+(1-5)^{2}}$
$=\sqrt{6^{2}+(-4)^{2}}=\sqrt{36+16}$
$=\sqrt{52}=2 \sqrt{13}$
$B C=\sqrt{(0-3)^{2}+(3-1)^{2}}=\sqrt{9+4}=\sqrt{13}$
$C D=\sqrt{(-1-0)^{2}+(-4-3)^{2}}=\sqrt{(-1)^{2}+(-7)^{2}}$
$=\sqrt{1+49}=\sqrt{50}$
$D A=\sqrt{|-3-(-1)|^{2}+[5-(-4)]^{2}}$
$=\sqrt{(-2)^{2}+(9)^{2}}$
$=\sqrt{4+81}=\sqrt{85}$
$A C=\sqrt{(0-(-3))^{2}+(3-5)^{2}}=\sqrt{(3)^{2}+(-2)^{2}}$
$=\sqrt{9+4}=\sqrt{13}$
$B D=\sqrt{(-1-3)^{2}+(-4-1)^{2}}=\sqrt{(-4)^{2}+(-5)^{2}}$
$=\sqrt{16+25}=\sqrt{41}$
We see that $\sqrt{\mathbf{1 3}}+\sqrt{\mathbf{1 3}}=\mathbf{2} \sqrt{\mathbf{1 3}}$
i.e., AC + BC = AB
A, B and C are collinear. Thus, ABCD is not a quadrilateral.
(iii) Let the points be A(4, 5), B(7, 6), C(4, 3) and D(1, 2).
$\therefore A B=\sqrt{(7-4)^{2}+(6-5)^{2}}=\sqrt{3^{2}+1^{2}}=\sqrt{10}$
$\mathrm{BC}=\sqrt{(4-7)^{2}+(3-6)^{2}}$
$=\sqrt{(-3)^{2}+(-3)^{2}}=\sqrt{18}$
$C D=\sqrt{(\mathbf{1}-\mathbf{4})^{2}+(\mathbf{2}-\mathbf{3})^{2}}$
$=\sqrt{(-3)^{2}+(-1)^{2}}=\sqrt{10}$
DA $=\sqrt{(\mathbf{1}-\mathbf{4})^{2}+(\mathbf{2}-\mathbf{5})^{2}}=\sqrt{\mathbf{9}+\mathbf{9}}=\sqrt{\mathbf{1 8}}$
$A C=\sqrt{(4-4)^{2}+(3-5)^{2}}=\sqrt{0+(-2)^{2}}=2$
$\mathrm{BD}=\sqrt{(1-7)^{2}+(2-6)^{2}}=\sqrt{36+16}=\sqrt{52}$
Since, AB = CD, BC = DA [opposite sides of the quadrilateral are equal]
And $\mathrm{AC} \neq \mathrm{BD} \Rightarrow$ Diagonals are unequal.
$\therefore$ ABCD is a parallelogram.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.