On expanding by first row, the value of the determinant of 3 × 3 square matrix

Question:

On expanding by first row, the value of the determinant of 3 × 3 square matrix A = aij is a11 C11 + a12 C12 + a13 C13">A = [aij] is a11 C11 + a12 C12 + a13 C13A = aij is a11 C11 + a12 C12 + a13 C13, where [Cij] is the cofactor of aij in A. Write the expression for its value on expanding by second column.

Solution:

If A=ai j">A=[ai j]A=ai j is a square matrix of order n, then the sum of the products of elements of a row (or a column) with their cofactors is always equal to det (A). Therefore,

$\sum_{i=1}^{n} a_{i j} C_{i j}=|A|$ and $\sum_{j=1}^{n} a_{i j} C_{i j}=|A|$

Given: $|A|=\mathrm{a}_{11} \mathrm{C}_{11}+\mathrm{a}_{12} \mathrm{C}_{12}+\mathrm{a}_{13} \mathrm{C}_{13}$

 

[Expanding along $R_{1}$ ]

Now,

$|A|=a_{12} \mathrm{C}_{12}+\mathrm{a}_{22} \mathrm{C}_{22}+\mathrm{a}_{32} \mathrm{C}_{32}$    [Expanding along $\left.R_{2}\right] \quad\left[\mathrm{a}_{12}, \mathrm{a}_{22}\right.$ and $\mathrm{a}_{32}$ are elements of $\left.C_{2}\right]$

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now