On increasing the diameter of a circle by 40%, its area will be increased by
(a) 40%
(b) 80%
(c) 96%
(d) 82%
(c) 96%
Let d be the original diameter.
Radius $=\frac{d}{2}$
Thus, we have:
Original area $=\pi \times\left(\frac{d}{2}\right)^{2}$
$=\frac{\pi d^{2}}{4}$
New diameter $=140 \%$ of $d$
$=\left(\frac{140}{100} \times d\right)$
$=\frac{7 d}{5}$
Now,
New radius $=\frac{7 d}{5 \times 2}$
$=\frac{7 d}{10}$
New area $=\pi \times\left(\frac{7 d}{10}\right)^{2}$
$=\frac{49 \pi d^{2}}{10}$
Increase in the area $=\left(\frac{49 \pi d^{2}}{10}-\frac{\pi d^{2}}{4}\right)$
$=\frac{24 \pi d^{2}}{100}$
$=\frac{6 \pi d^{2}}{25}$
We have:
Increase in the area $=\left(\frac{6 \pi d^{2}}{25} \times \frac{4}{\pi d^{2}} \times 100\right) \%$
$=96 \%$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.