Predict the products of electrolysis in each of the following:
(i) An aqueous solution of $\mathrm{AgNO}_{3}$ with silver electrodes
(ii) An aqueous solution $\mathrm{AgNO}_{3}$ with platinum electrodes
(iii) A dilute solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ with platinum electrodes
(iv) An aqueous solution of $\mathrm{CuCl}_{2}$ with platinum electrodes.
(i) $\mathrm{AgNO}_{3}$ ionizes in aqueous solutions to form $\mathrm{Ag}^{+}$and $\mathrm{NO}_{3}^{-}$ions.
On electrolysis, either $\mathrm{Ag}^{+}$ions or $\mathrm{H}_{2} \mathrm{O}$ molecules can be reduced at the cathode. But the reduction potential of $\mathrm{Ag}^{+}$ions is higher than that of $\mathrm{H}_{2} \mathrm{O}$.
Hence, $\mathrm{Ag}^{+}$ions are reduced at the cathode. Similarly, $\mathrm{Ag}$ metal or $\mathrm{H}_{2} \mathrm{O}$ molecules can be oxidized at the anode. But the oxidation potential of $\mathrm{Ag}$ is higher than that of $\mathrm{H}_{2} \mathrm{O}$ molecules.
Therefore, Ag metal gets oxidized at the anode.
(ii) Pt cannot be oxidized easily. Hence, at the anode, oxidation of water occurs to liberate O2. At the cathode, Ag+ ions are reduced and get deposited.
(iii) $\mathrm{H}_{2} \mathrm{SO}_{4}$ ionizes in aqueous solutions to give $\mathrm{H}^{+}$and $\mathrm{SO}_{4}^{2-}$ ions.
$\mathrm{H}_{2} \mathrm{SO}_{4(a q)} \longrightarrow 2 \mathrm{H}_{(a q)}^{+}+\mathrm{SO}_{4}^{2-}(a q)$
On electrolysis, either of $\mathrm{H}^{+}$ions or $\mathrm{H}_{2} \mathrm{O}$ molecules can get reduced at the cathode. But the reduction potential of $\mathrm{H}^{+}$ions is higher than that of $\mathrm{H}_{2} \mathrm{O}$ molecules.
Hence, at the cathode, H+ ions are reduced to liberate H2 gas.
On the other hand, at the anode, either of $\mathrm{SO}_{4}^{2-}$ ions or $\mathrm{H}_{2} \mathrm{O}$ molecules can get oxidized. But the oxidation of $\mathrm{SO}_{4}^{2-}$ involves breaking of more bonds than that
of $\mathrm{H}_{2} \mathrm{O}$ molecules. Hence, $\mathrm{SO}_{4}^{2-}$ ions have a lower oxidation potential than $\mathrm{H}_{2} \mathrm{O} .$ Thus, $\mathrm{H}_{2} \mathrm{O}$ is oxidized at the anode to liberate $\mathrm{O}_{2}$ molecules.
(iv) In aqueous solutions, $\mathrm{CuCl}_{2}$ ionizes to give $\mathrm{Cu}^{2+}$ and $\mathrm{Cl}^{-}$ions as:
$\mathrm{CuCl}_{2(\text { aq })} \longrightarrow \mathrm{Cu}_{(\text {(aq) })}^{2+}+2 \mathrm{Cl}_{(\text {aq })}^{-}$
On electrolysis, either of $\mathrm{Cu}^{2+}$ ions or $\mathrm{H}_{2} \mathrm{O}$ molecules can get reduced at the cathode. But the reduction potential of $\mathrm{Cu}^{2+}$ is more than that of $\mathrm{H}_{2} \mathrm{O}$ molecules.
Hence, $\mathrm{Cu}^{2+}$ ions are reduced at the cathode and get deposited
Similarly, at the anode, either of $\mathrm{Cl}^{-}$or $\mathrm{H}_{2} \mathrm{O}$ is oxidized. The oxidation potential of $\mathrm{H}_{2} \mathrm{O}$ is higher than that of $\mathrm{Cl}^{-}$.
But oxidation of $\mathrm{H}_{2} \mathrm{O}$ molecules occurs at a lower electrode potential than that of $\mathrm{Cl}^{-}$ions because of over-voltage (extra voltage required to liberate gas). As a result, $\mathrm{Cl}^{-}$ions are oxidized at the anode to liberate $\mathrm{Cl}_{2}$ gas.
- JEE Main
- Exam Pattern
- Previous Year Papers
- PYQ Chapterwise
- Physics
- Kinematics 1D
- Kinemetics 2D
- Friction
- Work, Power, Energy
- Centre of Mass and Collision
- Rotational Dynamics
- Gravitation
- Calorimetry
- Elasticity
- Thermal Expansion
- Heat Transfer
- Kinetic Theory of Gases
- Thermodynamics
- Simple Harmonic Motion
- Wave on String
- Sound waves
- Fluid Mechanics
- Electrostatics
- Current Electricity
- Capacitor
- Magnetism and Matter
- Electromagnetic Induction
- Atomic Structure
- Dual Nature of Matter
- Nuclear Physics
- Radioactivity
- Semiconductors
- Communication System
- Error in Measurement & instruments
- Alternating Current
- Electromagnetic Waves
- Wave Optics
- X-Rays
- All Subjects
- Physics
- Motion in a Plane
- Law of Motion
- Work, Energy and Power
- Systems of Particles and Rotational Motion
- Gravitation
- Mechanical Properties of Solids
- Mechanical Properties of Fluids
- Thermal Properties of matter
- Thermodynamics
- Kinetic Theory
- Oscillations
- Waves
- Electric Charge and Fields
- Electrostatic Potential and Capacitance
- Current Electricity
- Thermoelectric Effects of Electric Current
- Heating Effects of Electric Current
- Moving Charges and Magnetism
- Magnetism and Matter
- Electromagnetic Induction
- Alternating Current
- Electromagnetic Wave
- Ray Optics and Optical Instruments
- Wave Optics
- Dual Nature of Radiation and Matter
- Atoms
- Nuclei
- Semiconductor Electronics: Materials, Devices and Simple Circuits.
- Chemical Effects of Electric Current,
All Study Material
- JEE Main
- Exam Pattern
- Previous Year Papers
- PYQ Chapterwise
- Physics
- Kinematics 1D
- Kinemetics 2D
- Friction
- Work, Power, Energy
- Centre of Mass and Collision
- Rotational Dynamics
- Gravitation
- Calorimetry
- Elasticity
- Thermal Expansion
- Heat Transfer
- Kinetic Theory of Gases
- Thermodynamics
- Simple Harmonic Motion
- Wave on String
- Sound waves
- Fluid Mechanics
- Electrostatics
- Current Electricity
- Capacitor
- Magnetism and Matter
- Electromagnetic Induction
- Atomic Structure
- Dual Nature of Matter
- Nuclear Physics
- Radioactivity
- Semiconductors
- Communication System
- Error in Measurement & instruments
- Alternating Current
- Electromagnetic Waves
- Wave Optics
- X-Rays
- All Subjects
- Physics
- Motion in a Plane
- Law of Motion
- Work, Energy and Power
- Systems of Particles and Rotational Motion
- Gravitation
- Mechanical Properties of Solids
- Mechanical Properties of Fluids
- Thermal Properties of matter
- Thermodynamics
- Kinetic Theory
- Oscillations
- Waves
- Electric Charge and Fields
- Electrostatic Potential and Capacitance
- Current Electricity
- Thermoelectric Effects of Electric Current
- Heating Effects of Electric Current
- Moving Charges and Magnetism
- Magnetism and Matter
- Electromagnetic Induction
- Alternating Current
- Electromagnetic Wave
- Ray Optics and Optical Instruments
- Wave Optics
- Dual Nature of Radiation and Matter
- Atoms
- Nuclei
- Semiconductor Electronics: Materials, Devices and Simple Circuits.
- Chemical Effects of Electric Current,