Question:
$x \sqrt{x+2}$
Solution:
Let $(x+2)=t$
∴ dx = dt
$\Rightarrow \int x \sqrt{x+2} d x=\int(t-2) \sqrt{t} d t$
$=\int\left(t^{\frac{3}{2}}-2 t^{\frac{1}{2}}\right) d t$
$=\int t^{\frac{3}{2}} d t-2 \int t^{\frac{1}{2}} d t$
$=\frac{t^{\frac{5}{2}}}{\frac{5}{2}}-2\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+\mathrm{C}$
$=\frac{2}{5} t^{\frac{5}{2}}-\frac{4}{3} t^{\frac{3}{2}}+\mathrm{C}$
$=\frac{2}{5}(x+2)^{\frac{5}{2}}-\frac{4}{3}(x+2)^{\frac{3}{2}}+\mathrm{C}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.