Prove

Question:

$x \sqrt{x+2}$

Solution:

Let $(x+2)=t$

∴ dx = dt

$\Rightarrow \int x \sqrt{x+2} d x=\int(t-2) \sqrt{t} d t$

$=\int\left(t^{\frac{3}{2}}-2 t^{\frac{1}{2}}\right) d t$

$=\int t^{\frac{3}{2}} d t-2 \int t^{\frac{1}{2}} d t$

$=\frac{t^{\frac{5}{2}}}{\frac{5}{2}}-2\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+\mathrm{C}$

$=\frac{2}{5} t^{\frac{5}{2}}-\frac{4}{3} t^{\frac{3}{2}}+\mathrm{C}$

$=\frac{2}{5}(x+2)^{\frac{5}{2}}-\frac{4}{3}(x+2)^{\frac{3}{2}}+\mathrm{C}$

 

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now