$\tan ^{3} 2 x \sec 2 x$
$\tan ^{3} 2 x \sec 2 x=\tan ^{2} 2 x \tan 2 x \sec 2 x$
$=\left(\sec ^{2} 2 x-1\right) \tan 2 x \sec 2 x$
$=\sec ^{2} 2 x \cdot \tan 2 x \sec 2 x-\tan 2 x \sec 2 x$
$\therefore \int \tan ^{3} 2 x \sec 2 x d x=\int \sec ^{2} 2 x \tan 2 x \sec 2 x d x-\int \tan 2 x \sec 2 x d x$
$=\int \sec ^{2} 2 x \tan 2 x \sec 2 x d x-\frac{\sec 2 x}{2}+\mathrm{C}$
Let $\sec 2 x=t$
$\therefore 2 \sec 2 x \tan 2 x d x=d t$
$\therefore \int \tan ^{3} 2 x \sec 2 x d x=\frac{1}{2} \int t^{2} d t-\frac{\sec 2 x}{2}+\mathrm{C}$
$=\frac{t^{3}}{6}-\frac{\sec 2 x}{2}+\mathrm{C}$
$=\frac{(\sec 2 x)^{3}}{6}-\frac{\sec 2 x}{2}+\mathrm{C}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.