Prove

Question:

$\frac{1}{\sqrt{9-25 x^{2}}}$

Solution:

Let $5 x=t$

$\therefore 5 d x=d t$

$\Rightarrow \int \frac{1}{\sqrt{9-25 x^{2}}} d x=\frac{1}{5} \int \frac{1}{9-t^{2}} d t$

$=\frac{1}{5} \int \frac{1}{\sqrt{3^{2}-t^{2}}} d t$

$=\frac{1}{5} \sin ^{-1}\left(\frac{t}{3}\right)+\mathrm{C}$

$=\frac{1}{5} \sin ^{-1}\left(\frac{5 x}{3}\right)+\mathrm{C}$

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now