Question:
$\frac{\cos x-\sin x}{1+\sin 2 x}$
Solution:
$\frac{\cos x-\sin x}{1+\sin 2 x}=\frac{\cos x-\sin x}{\left(\sin ^{2} x+\cos ^{2} x\right)+2 \sin x \cos x}$ $\left[\sin ^{2} x+\cos ^{2} x=1 ; \sin 2 x=2 \sin x \cos x\right]$
$=\frac{\cos x-\sin x}{(\sin x+\cos x)^{2}}$
Let $\sin x+\cos x=t$
$\therefore(\cos x-\sin x) d x=d t$
$\Rightarrow \int \frac{\cos x-\sin x}{1+\sin 2 x} d x=\int \frac{\cos x-\sin x}{(\sin x+\cos x)^{2}} d x$
$=\int \frac{d t}{t^{2}}$
$=\int t^{-2} d t$
$=-t^{-1}+\mathrm{C}$
$=-\frac{1}{t}+\mathrm{C}$
$=\frac{-1}{\sin x+\cos x}+\mathrm{C}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.