Prove

Question:

Prove $\tan ^{-1} \sqrt{x}=\frac{1}{2} \cos ^{-1}\left(\frac{1-x}{1+x}\right), x \in[0,1]$

Solution:

Let $x=\tan ^{2} \theta$. Then, $\sqrt{x}=\tan \theta \Rightarrow \theta=\tan ^{-1} \sqrt{x}$.

$\therefore \frac{1-x}{1+x}=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos 2 \theta$

Now, we have:

R.H.S. $=\frac{1}{2} \cos ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \cos ^{-1}(\cos 2 \theta)=\frac{1}{2} \times 2 \theta=\theta=\tan ^{-1} \sqrt{x}=$ L.H.S.

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now