Prove that


$15 x^{2}-28=x$



$15 x^{2}-28=x$

$\Rightarrow 15 x^{2}-x-28=0$

On comparing it with $a x^{2}+b x+c=0$, we get:

$a=15, b=-1$ and $c=-28$

Discriminant $D$ is given by:

$D=\left(b^{2}-4 a c\right)$

$=(-1)^{2}-4 \times 15 \times(-28)$





Hence, the roots of the equation are real.

Roots $\alpha$ and $\beta$ are given by :

$\alpha=\frac{-b+\sqrt{D}}{2 a}=\frac{-(-1)+\sqrt{1681}}{2 \times 15}=\frac{1+41}{30}=\frac{42}{30}=\frac{7}{5}$

$\beta=\frac{-b-\sqrt{D}}{2 a}=\frac{-(-1)-\sqrt{1681}}{2 \times 15}=\frac{1-41}{30}=\frac{-40}{30}=\frac{-4}{3}$

Thus, the roots of the equation are $\frac{7}{5}$ and $\frac{-4}{3}$.


Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now