Prove that

Question:

$\cos (\tan \sqrt{x+1})$

Solution:

Let $y=\cos (\tan \sqrt{x+1})$

Differentiating both sides w.r.t. $x$

$\frac{d y}{d x}=\frac{d}{d x} \cos (\tan \sqrt{x+1})$

$=-\sin (\tan \sqrt{x+1}) \cdot \frac{d}{d x}(\tan \sqrt{x+1})$

$=-\sin (\tan \sqrt{x+1}) \cdot \sec ^{2} \sqrt{x+1} \cdot \frac{d}{d x} \sqrt{x+1}$

$=-\sin (\tan \sqrt{x+1}) \cdot \sec ^{2} \sqrt{x+1} \cdot \frac{1}{2 \sqrt{x+1}} \cdot 1$

Thus, $\quad \frac{d y}{d x}=-\frac{1}{2 \sqrt{x+1}} \sin (\tan \sqrt{x+1}) \cdot \sec ^{2} \sqrt{x+1}$

Leave a comment