Prove that the function


Prove that the function $f$ given by $f(x)=\log \sin x$ is strictly increasing on $\left(0, \frac{\pi}{2}\right)$ and strictly decreasing on $\left(\frac{\pi}{2}, \pi\right)$.


We have,

$f(x)=\log \sin x$

$\therefore f^{\prime}(x)=\frac{1}{\sin x} \cos x=\cot x$

In interval $\left(0, \frac{\pi}{2}\right), f^{\prime}(x)=\cot x>0$.

$\therefore f$ is strictly increasing in $\left(0, \frac{\pi}{2}\right)$.

In interval $\left(\frac{\pi}{2}, \pi\right), f^{\prime}(x)=\cot x<0$

$\therefore f$ is strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$.

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now