Prove that the functionis continuous at


Prove that the function $f(x)=5 x-3$ is continuous at $x=0$, at $x=-3$ and at $x=5$.



The given function is $f(x)=5 x-3$

At $x=0, f(0)=5 \times 0-3=-3$

$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}(5 x-3)=5 \times 0-3=-3$

$\therefore \lim _{x \rightarrow 0} f(x)=f(0)$

Therefore, f is continuous at x = 0

At $x=-3, f(-3)=5 \times(-3)-3=-18$

$\lim _{x \rightarrow-3} f(x)=\lim _{x \rightarrow-3}(5 x-3)=5 \times(-3)-3=-18$

$\therefore \lim _{x \rightarrow-3} f(x)=f(-3)$

herefore, is continuous at x = −3

At $x=5, f(x)=f(5)=5 \times 5-3=25-3=22$

$\lim _{x \rightarrow 5} f(x)=\lim _{x \rightarrow 5}(5 x-3)=5 \times 5-3=22$

$\therefore \lim _{x \rightarrow 5} f(x)=f(5)$

Therefore, f is continuous at x = 5

Leave a comment