Prove the following

Question:

$\sqrt{\left(1-\cos ^{2} \theta\right) \sec ^{2} \theta}=\tan \theta$

Solution:

True

$\sqrt{\left(1-\cos ^{2} \theta\right) \sec ^{2} \theta}=\sqrt{\sin ^{2} \theta \cdot \sec ^{2} \theta}$  $\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$

$=\sqrt{\sin ^{2} \theta \cdot \frac{1}{\cos ^{2} \theta}}=\sqrt{\tan ^{2} \theta}=\tan \theta \quad\left[\because \sec \theta=\frac{1}{\cos \theta}, \tan \theta=\frac{\sin \theta}{\cos \theta}\right]$

 

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now