Resolve each of the following quadratic trinomial into factor:
36a2 + 12abc − 15b2c2
The given expression is $36 \mathrm{a}^{2}+12 \mathrm{abc}-15 \mathrm{~b}^{2} \mathrm{c}^{2} . \quad$ (Coefficient of $\mathrm{a}^{2}=36$, coefficient of $\mathrm{a}=12 \mathrm{bc}$ and constant term $=-15 \mathrm{~b}^{2} \mathrm{c}^{2}$ )
Now, we will split the coefficient of a into two parts such that their sum is 12 bc and their product equals the product of the coefficient of $\mathrm{a}^{2}$ and the constant term, i.e., $36 \times\left(-15 \mathrm{~b}^{2} \mathrm{c}^{2}\right)=-540 \mathrm{~b}^{2} \mathrm{c}^{2}$.
Now,
$(-18 \mathrm{bc})+30 \mathrm{bc}=12 \mathrm{bc}$
and
$(-18 \mathrm{bc}) \times 30 \mathrm{bc}=-540 \mathrm{~b}^{2} \mathrm{c}^{2}$
Replacing the middle term 12 abc by $-18 a b c+30 a b c$, we get:
$36 \mathrm{a}^{2}+12 \mathrm{abc}-15 \mathrm{~b}^{2} \mathrm{c}^{2}=36 \mathrm{a}^{2}-18 \mathrm{abc}+30 \mathrm{abc}-15 \mathrm{~b}^{2} \mathrm{c}^{2}$
$=\left(36 \mathrm{a}^{2}-18 \mathrm{abc}\right)+\left(30 \mathrm{abc}-15 \mathrm{~b}^{2} \mathrm{c}^{2}\right)$
$=18 \mathrm{a}(2 \mathrm{a}-\mathrm{bc})+15 \mathrm{bc}(2 \mathrm{a}-\mathrm{bc})$
$=(18 \mathrm{a}+15 \mathrm{bc})(2 \mathrm{a}-\mathrm{bc})$
$=3(6 \mathrm{a}+5 \mathrm{bc})(2 \mathrm{a}-\mathrm{bc})$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.