Show that


$\int_{0}^{1}\left(x e^{x}+\sin \frac{\pi x}{4}\right) d x$


Let $I=\int_{0}^{1}\left(x e^{x}+\sin \frac{\pi x}{4}\right) d x$

$\int\left(x e^{x}+\sin \frac{\pi x}{4}\right) d x=x \int e^{x} d x-\int\left\{\left(\frac{d}{d x} x\right) \int e^{x} d x\right\} d x+\left\{\frac{-\cos \frac{\pi x}{4}}{\frac{\pi}{4}}\right\}$

$=x e^{x}-\int e^{x} d x-\frac{4 \pi}{\pi} \cos \frac{x}{4}$

$=x e^{x}-e^{x}-\frac{4 \pi}{\pi} \cos \frac{x}{4}$


By second fundamental theorem of calculus, we obtain


$=\left(1 . e^{1}-e^{1}-\frac{4}{\pi} \cos \frac{\pi}{4}\right)-\left(0 . e^{0}-e^{0}-\frac{4}{\pi} \cos 0\right)$


$=1+\frac{4}{\pi}-\frac{2 \sqrt{2}}{\pi}$

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now