$y^{2}=a\left(b^{2}-x^{2}\right)$
$y^{2}=a\left(b^{2}-x^{2}\right)$
Differentiating both sides with respect to x, we get:
$2 y \frac{d y}{d x}=a(-2 x)$
$\Rightarrow 2 y y^{\prime}=-2 a x$
$\Rightarrow y y^{\prime}=-\alpha x$ ...(1)
Again, differentiating both sides with respect to x, we get:
$y^{\prime} \cdot y^{\prime}+y y^{\prime \prime}=-a$
$\Rightarrow\left(y^{\prime}\right)^{2}+y y^{\prime \prime}=-a$ ...(2)
Dividing equation (2) by equation (1), we get:
$\frac{\left(y^{\prime}\right)^{2}+y y^{\prime \prime}}{y y^{\prime}}=\frac{-a}{-a x}$
$\Rightarrow x y y^{\prime \prime}+x\left(y^{\prime}\right)^{2}-y y^{\prime \prime}=0$
This is the required differential equation of the given curve.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.