Show that

Question:

Show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ is perpendicular to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$, for any two nonzero vectors $\vec{a}$ and $\vec{b}$

Solution:

$(|\vec{a}| \vec{b}+|\vec{b}| \vec{a}) \cdot(|\vec{a}| \vec{b}-|\vec{b}| \vec{a})$

$=|\vec{a}|^{2} \vec{b} \cdot \vec{b}-|\vec{a}||\vec{b}| \vec{b} \cdot \vec{a}+|\vec{b}||\vec{a}| \vec{a} \cdot \vec{b}-|\vec{b}|^{2} \vec{a} \cdot \vec{a}$

$=|\vec{a}|^{2}|\vec{b}|^{2}-|\vec{b}|^{2}|\vec{a}|^{2}$

$=0$

Hence, $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ and $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$ are perpendicular to each other.

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now