Show that


$\cos ^{3} x e^{\log \sin x}$


$\cos ^{3} x e^{\log \sin x}=\cos ^{3} x \times \sin x$

Let $\cos x=t \Rightarrow-\sin x d x=d t$

$\Rightarrow \int \cos ^{3} x e^{\log \sin x} d x=\int \cos ^{3} x \sin x d x$

$=-\int t \cdot d t$


$=-\frac{\cos ^{4} x}{4}+C$

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now