logo
  • JEE
    • JEE 2024 Warrior Course
      For Dropper/Repeater
    • JEE 2025 BrahMos Course
      For Class 11th Student
    • JEE 2024 Prahaar Course
      For Class 12th Student
    • JEE 2023 Mission IIT Course
      Crash Course for JEE Advanced
    • JEE 2026 Agni Integrated Course
      For Class 10th + JEE Student
    • JEE 2027 Shakti Integrated Course
      For Class 9th + 10th + JEE Student
  • NEET
    • NEET 2025 BrahMos Course
      For Class 11th Student
    • NEET 2024 Prahaar Course
      For Class 12th Student
    • NEET 2024 Warrior Course
      For Dropper/Repeater
    • NEET 2026 Agni Integrated Course
      For Class 10th + NEET Student
    • NEET 2027 Shakti Integrated Course
      For Class 9th + 10th + NEET Student
  • Class 10
    • Class 10 - 2024 Champ Course
      For Class 10th Boards Student
    • JEE/NEET 2026 Agni Integrated Course
      For Class 10th Boards + JEE/NEET Student
  • Class 9
    • Captain Course - 2024
      For Class 9th Student
    • Bravo 2025 Integrated Course
      For Class 9th + 10th Student
    • JEE/NEET 2027 Shakti Integrated Course
      For Class 9th + 10th + JEE/NEET Student
  • Class 8
    • Shaurya Course 2024
      For Class 8th Student
  • More
    • Contact Us
    • Hiring
    • Media
    • About

Show that

Question:

Show that $f(x)=\left\{\begin{array}{rrr}\frac{|x-a|}{x-a}, & \text { when } & x \neq a \\ 1 & , \text { when } & x=a\end{array}\right.$

is discontinuous at x = a.

Solution:

The given function can be rewritten as:

$f(x)=\left\{\begin{array}{l}\frac{x-a}{x-a}, \text { when } x>a \\ \frac{a-x}{x-a}, \text { when } x

$\Rightarrow f(x)=\left\{\begin{array}{c}1, \text { when } x>a \\ -1, \text { when } x

 

$\Rightarrow f(x)=\left\{\begin{array}{l}1, \text { when } x \geq a \\ -1, \text { when } x

We observe

$(\mathrm{LHL}$ at $x=a)=\lim _{x \rightarrow a^{-}} f(x)=\lim _{h \rightarrow 0} f(a-h)=\lim _{h \rightarrow 0}(-1)=-1$

$(\mathrm{RHL}$ at $x=a)=\lim _{x \rightarrow a^{+}} f(x)=\lim _{h \rightarrow 0} f(a+h)=\lim _{h \rightarrow 0}(1)=1$

$\therefore \lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$

Thus, f(x) is discontinuous at x = a.

Leave a comment

All Study Material

Contact Us

  • : +91-6376-440-597
  • : [email protected]

Address:

eSaral Ventures Pvt. Ltd. 806, in front of Birla Eye Hospital, Shastri Nagar, Dadabari, Kota, Rajasthan 324009

Download App

Follow Us

Important Links

  • Career
  • Posts
  • Courses
  • Questions
  • Privacy Policy
  • Terms and Conditions

Copyright @2023   |   eSaral Ventures Pvt Ltd   |   All Rights Reserved