Show that


$\frac{d y}{d x}=y \tan x ; y=1$ when $x=0$


$\frac{d y}{d x}=y \tan x$

$\Rightarrow \frac{d y}{y}=\tan x d x$

Integrating both sides, we get:

$\int \frac{d y}{y}=-\int \tan x d x$

$\Rightarrow \log y=\log (\sec x)+\log \mathrm{C}$

$\Rightarrow \log y=\log (\mathrm{C} \sec x)$

$\Rightarrow y=\mathrm{C} \sec x$          ...(1)

Now, $y=1$ when $x=0$.

$\Rightarrow 1=\mathrm{C} \times \mathrm{sec} 0$

$\Rightarrow 1=\mathrm{C} \times 1$

$\Rightarrow \mathrm{C}=1$

Substituting C = 1 in equation (1), we get:

y = sec x



Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now