Question:
Show that for a ³ 1, f (x) = √3 sin x – cos x – 2ax + b is decreasing in R.
Solution:
Given,
f (x) = √3 sin x – cos x – 2ax + b, a ³ 1
On differentiating both sides w.r.t. x, we get
f’ (x) = √3 cos x + sin x – 2a
For increasing function, f’ (x) < 0
So, $\sqrt{3} \cos x+\sin x-2 a<0$
$2\left(\frac{\sqrt{3}}{2} \cos x+\frac{1}{2} \sin x\right)-2 a<0$
$\frac{\sqrt{3}}{2} \cos x+\frac{1}{2} \sin x-a<0$
$\left(\cos \frac{\pi}{6} \cos x+\sin \frac{\pi}{6} \sin x\right)-a<0$
$\cos \left(x-\frac{\pi}{6}\right)-a<0$
As $\cos x \in[-1,1]$ and $a \geq 1$
Hence, $f^{\prime}(x)<0$
Therefore, the given function is decreasing in R.