Show that the points (–2, 3, 5), (1, 2, 3) and (7, 0, –1) are collinear.
Let points (–2, 3, 5), (1, 2, 3), and (7, 0, –1) be denoted by P, Q, and R respectively.
Points P, Q, and R are collinear if they lie on a line.
$\mathrm{PQ}=\sqrt{(1+2)^{2}+(2-3)^{2}+(3-5)^{2}}$
$=\sqrt{(3)^{2}+(-1)^{2}+(-2)^{2}}$
$=\sqrt{9+I+4}$
$=\sqrt{14}$
$\mathrm{QR}=\sqrt{(7-1)^{2}+(0-2)^{2}+(-1-3)^{2}}$
$=\sqrt{(6)^{2}+(-2)^{2}+(-4)^{2}}$
$=\sqrt{36+4+16}$
$=\sqrt{56}$
$=2 \sqrt{14}$
$\mathrm{PR}=\sqrt{(7+2)^{2}+(0-3)^{2}+(-1-5)^{2}}$
$=\sqrt{(9)^{2}+(-3)^{2}+(-6)^{2}}$
$=\sqrt{81+9+36}$
$=\sqrt{126}$
$=3 \sqrt{14}$
Here, $\mathrm{PQ}+\mathrm{QR}=\sqrt{14}+2 \sqrt{14}=3 \sqrt{14}=\mathrm{PR}$
Hence, points $P(-2,3,5), Q(1,2,3)$, and $R(7,0,-1)$ are collinear.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.