Simplify:
(i) $\frac{3^{n} \times 9^{n+1}}{3^{n-1} \times 9^{n-1}}$
(ii) $\frac{\left(5 \times 25^{\mathrm{n}+1}\right)\left(25 \times 5^{2 \mathrm{n}}\right)}{\left(5 \times 5^{2 \mathrm{n}+3}\right)-(25)^{\mathrm{n}+1}}$
(iii) $\frac{\left(5^{n+3}\right)-\left(6 \times 5^{n+1}\right)}{\left(9 \times 5^{n}\right)-\left(2^{2} \times 5^{n}\right)}$
(i) $\frac{3^{n} \times 9^{n+1}}{3^{n-1} \times 9^{n-1}}$
$=\frac{3^{\mathrm{n}} \times 9^{\mathrm{n}} \times 9}{\frac{3^{\mathrm{n}}}{3} \times \frac{9^{\mathrm{n}}}{9}}=9 \times 3 \times 9=243$
(ii) $\frac{\left(5 \times 25^{\mathrm{n}+1}\right)\left(25 \times 5^{2 \mathrm{n}}\right)}{\left(5 \times 5^{2 \mathrm{n}+3}\right)-(25)^{\mathrm{n}+1}}$
$=\frac{\left(5 \times 25^{\mathrm{n}} \times 25\right)-\left(25 \times 25^{\mathrm{n}}\right)}{\left(5 \times 25^{\mathrm{n}} \times 125\right)\left(25^{\mathrm{n}} \times 25\right)}$
$=\frac{25^{\mathrm{n}} \times 25(5-1)}{25^{\mathrm{n}} \times 25(25-1)}$
$=\frac{4}{24}=\frac{1}{6}$
(iii) $\frac{\left(5^{\mathrm{n}+3}\right)-\left(6 \times 5^{\mathrm{n}+1}\right)}{\left(9 \times 5^{\mathrm{n}}\right)-\left(2^{2} \times 5^{\mathrm{n}}\right)}$
$=\frac{\left(5^{\mathrm{n}+3}\right)-\left(6 \times 5^{\mathrm{n}+1}\right)}{\left(9 \times 5^{\mathrm{n}}\right)-\left(2^{2} \times 5^{\mathrm{n}}\right)}$
$=\frac{\left(5^{\mathrm{n}} \times 5^{3}\right)-\left(6 \times 5^{\mathrm{n}} \times 5\right)}{\left(9 \times 5^{\mathrm{n}}\right)-\left(2^{2} \times 5^{\mathrm{n}}\right)}$
$=\frac{5^{n}(125-30)}{5^{n}(9-4)}$
$=\frac{95}{5}=19$
(iv) $\frac{\left(6 \times 8^{n+1}\right)+\left(16 \times 2^{3 n-2}\right)}{\left(10 \times 2^{3 n+1}\right)-7 \times(8)^{n}}$
$=\frac{\left(6 \times 8^{\mathrm{n}} \times 8\right)+\left(16 \times 8^{\mathrm{n}} \times \frac{1}{4}\right)}{\left(10 \times 8^{\mathrm{n}} \times 2\right)-7 \times(8)^{\mathrm{n}}}$
$=\frac{8^{n}(48+4)}{8^{n}(20-7)}$
$=\frac{52}{13}=4$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.