Simplify the following:
(i) $3\left(a^{4} b^{3}\right)^{10} \times 5\left(a^{2} b^{2}\right)^{3}$
(ii) $\left(2 x^{-2} y^{3}\right)^{3}$
(iii) $\frac{\left(4 \times 10^{7}\right)\left(6 \times 10^{-5}\right)}{8 \times 10^{4}}$
(iv) $\frac{4 a b^{2}\left(-5 a b^{3}\right)}{10 a^{2} b^{2}}$
(v) $\left(\frac{x^{2} y^{2}}{a^{2} b^{3}}\right)^{n}$
(vi) $\frac{\left(a^{3 n}-9\right)^{6}}{a^{2 n-4}}$
(i) $3\left(a^{4} b^{3}\right)^{10} \times 5\left(a^{2} b^{2}\right)^{3}$
$=3\left(a^{40} b^{30}\right) \times 5\left(a^{6} b^{6}\right)$
$=15\left(a^{46} b^{36}\right)$
(ii) $\left(2 x^{-2} y^{3}\right)^{3}$
$\left(2^{3} \times^{-2 \times 3} y^{3 \times 3}\right)=8 x^{-6} y^{9}$
(iii) $\frac{\left(4 \times 10^{7}\right)\left(6 \times 10^{-5}\right)}{8 \times 10^{4}}$
$\frac{\left(4 \times 10^{7}\right)\left(6 \times 10^{-5}\right)}{8 \times 10^{4}}$
$=\frac{\left(24 \times 10^{7} \times 10^{-5}\right)}{8 \times 10^{4}}$
$=\frac{\left(24 \times 10^{7-5}\right)}{8 \times 10^{4}}$
$=\frac{\left(24 \times 10^{2}\right)}{8 \times 10^{4}}$
$=\frac{3}{100}$
(iv) $\frac{4 a b^{2}\left(-5 a b^{3}\right)}{10 a^{2} b^{2}}$
$\frac{4 a b^{2}\left(-5 a b^{3}\right)}{10 a^{2} b^{2}}$
$=-\frac{20 a^{2} b^{5}}{10 a^{2} b^{2}}=-2 b^{3}$
(v) $\left(\frac{x^{2} y^{2}}{a^{2} b^{3}}\right)^{n}$
$\left(\frac{x^{2} y^{2}}{a^{2} b^{3}}\right)^{n}$
$=\frac{x^{2 n} y^{2 n}}{a^{2 n} b^{3 n}}$
(vi) $\frac{\left(a^{3 n}-9\right)^{6}}{a^{2 n-4}}$
$\frac{\left(a^{3 n}-9\right)^{6}}{a^{2 n-4}}$
$=\frac{\mathrm{a}^{18 \mathrm{n}-54}}{\mathrm{a}^{2 \mathrm{n}-4}}=\mathrm{a}^{18 \mathrm{n}-2 \mathrm{n}-54+4}=\mathrm{a}^{16 \mathrm{n}-50}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.