Solve each of the following systems of equations by the method of cross-multiplication :
$2 a x+3 b y=a+2 b$
$3 a x+2 b y=2 a+b$
GIVEN:
$2 a x+3 b y=a+2 b$
$3 a x+2 b y=2 a+b$
To find: The solution of the systems of equation by the method of cross-multiplication:
Here we have the pair of simultaneous equation
$2 a x+3 b y-(a+2 b)=0$
$3 a x+2 b y-(2 a+b)=0$
By cross multiplication method we get
$\frac{x}{(-(2 a+b) \times 3 b)-(2 b \times(-(a+2 b)))}=\frac{-y}{(2 a) \times(-(2 a+b))-((3 a) \times(-(a+2 b)))}=\frac{1}{4 a b-9 a b}$
$\frac{x}{(-(2 a+b) \times 3 b)-(2 b \times(-(a+2 b)))}=\frac{-y}{(2 a) \times(-(2 a+b))-((3 a) \times(-(a+2 b)))}=\frac{1}{-5 a b}$
Now consider
$\frac{x}{(-(2 a+b) \times 3 b)-(2 b \times(-(a+2 b)))}=\frac{1}{-5 a b}$
$-5 a b x=(-(2 a+b) \times 3 b)-(2 b \times(-(a+2 b)))$
$-5 a b x=\left(-6 a b-3 b^{2}\right)-\left(-2 a b-4 b^{2}\right)$
$-5 a b x=-4 a b+b^{2}$
$5 x a b=4 a b-b^{2}$
$\Rightarrow x=\frac{4 a b-b^{2}}{5 a b}$
$\Rightarrow x=\frac{4 a-b}{5 a}$
And
$\frac{-y}{(2 a) \times(-(2 a+b))-((3 a) \times(-(a+2 b)))}=\frac{1}{-5 a b}$
$5 y a b=(2 a) \times(-(2 a+b))-((3 a) \times(-(a+2 b)))$
$5 y a b=-4 a^{2}-2 a b-\left(-3 a^{2}-6 a b\right)$
$5 y a b=-a^{2}+4 a b$
$\Rightarrow y=\frac{4 a b-a^{2}}{5 a b}$
$\Rightarrow y=\frac{4 b-a}{5 b}$
Hence we get the value of $x=\frac{4 a-b}{5 a}$ and $\mathrm{y}=\frac{4 b-a}{5 b}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.