Solve the following


If z1 and z2 are two complex numbers such that z1 + z2 is a real number, then z2 = ____________.


Given for two complex numbers, z1 and z2, we have z1z2 is real number

Let $z_{1}=x_{1}+i y_{1}$

$z_{2}=x_{2}+i y_{2}$

$\Rightarrow z_{1}+z_{2}=x_{1}+i y_{1}+x_{2}+i y_{2}$


i. e $z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)$

Since $z_{1}+z_{2}$ is real

$\Rightarrow y_{1}+y_{2}=0$

i. e $y_{1}=-y_{2}$


i.e $z_{2}=x_{2}+i y_{2}=x_{2}-i y_{1}$

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now