Solve the following :


A block of mass $m$ moving at a speed $v$ compresses a spring through a distance $x$ before its speed is halved. Find the spring constant of the spring.


Energy at $A=$ Energy at $B$

$\frac{1}{2} \mathrm{mv}_{\mathrm{a}}=\frac{1}{2} \mathrm{mv}_{\mathrm{b}}{ }^{2}+\mathrm{k} \mathrm{x}^{2}$

$m v^{2}=\frac{m v^{2}}{4}+k x^{2}$

$m v^{2}=\frac{m v^{2}}{4}+k x^{2}$

$\mathrm{k}=\frac{3 m v^{2}}{2 x^{2}}$

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now